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Abstract

Given a symmetric, semi-bounded, second-order elliptic differential operator
A on a bounded domain with C1,1 boundary, we provide a Kreı̆n-type formula
for the resolvent difference between its Friedrichs extension and an arbitrary
self-adjoint one.
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Mathematics Subject Classification: 47B25, 47B38, 35J25

1. Introduction

Given a bounded open set � ⊂ Rn, n > 1, let us consider a second-order elliptic differential
operator

A : C∞
c (�) ⊂ L2(�) → L2(�), A =

n∑
i,j=1

∂i(aij ∂j ) −
n∑

i=1

bi∂i − c.

Such an operator A, under appropriate hypotheses on its coefficients and on � (these will be
made precise in section 3), is closable and its closure Amin, the minimal realization of A, has a
domain given by H 2

0 (�), the closure of C∞
c (�) with respect to the H 2(�) Sobolev norm. If A

is symmetric then Amin is symmetric but not self-adjoint, i.e. A is not essentially self-adjoint.
Indeed A∗

min = Amax, where Amax the maximal realization of A, has the domain made by the
functions u ∈ L2(�) such that Au ∈ L2(�). Assuming that Amin is semi-bounded, then Amin

has a self-adjoint extension A0 (the Friedrichs extension, corresponding to Dirichlet boundary
conditions), Amin � A0 � Amax, and hence Amin has infinitely many self-adjoint extensions.

The problem of the parametrization of all self-adjoint extensions of Amin in terms of
boundary conditions was completely solved (in the case of an elliptic differential operator of
arbitrary order) in [12] (for some older papers about similar topics we just quote [5, 23]).
Here, by using the approach developed in [16–19], we give an alternative derivation of such
a result by providing a Kreı̆n-like formula for the resolvent difference between an arbitrary
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self-adjoint extension of Amin and its Friedrichs extension A0. For the sake of simplicity here
we consider the case of a second-order differential operator. The case of higher order operators
can be treated in a similar way.

In the case A is the Laplacian, the Kreı̆n resolvent formula presented here has been given
in [19], example 5.5. For other recent results on the Kreı̆n-type formula for partial differential
operators see [1, 3, 4, 8, 9, 22].

In order to help the reader’s intuition on the results presented here, in section 4 we consider
one of the simplest possible examples: a rotation-invariant elliptic operators A on the disc
D ⊂ R2. Thus, notwithstanding the symmetric operator considered here has infinite deficiency
indices, due to the presence of symmetries the resolvents of their self-adjoint extensions can
be written, by separation of variables, in a form which resembles the finite indices case (see
the comments in remark 4.1), and the corresponding spectral analysis becomes simpler. As
illustrated, given any sequence {λn}∞1 ⊂ R, boundary conditions at ∂D can be given for which
A is self-adjoint and such that {λn}∞1 is contained in its point spectrum. Remark 4.3 shows
that such boundary conditions can be quite different from the usual ones.

2. Preliminaires

For the reader’s convenience in this section we collect some results from [16–19]. We refer
to these papers, in particular to [19], for a thorough discussion about the connection of the
approach presented here with both the standard von Neumann’s theory of self-adjoint extension
[15] and with boundary triple theory [6, 10].

From now on we will denote by

D(L), K (L), R(L), ρ(L)

the domain, kernel, range and resolvent set of a linear operator L.
Let H a Hilbert space with scalar product 〈·, ·〉 and let

A0 : D(A0) ⊆ H → H

a self-adjoint operator on it. We denote by HA0 the Hilbert space given by the linear space
D(A0) endowed with the scalar product

〈φ,ψ〉A0 = 〈φ,ψ〉 + 〈A0φ,A0ψ〉.
Given then a Hilbert space h with scalar product (·, ·) and a linear, bounded and surjective
operator

τ : HA0 → h,

such that K (τ ) is dense in H ; we denote by S the densely defined closed symmetric operator

S : K (τ ) ⊆ H → H , Sφ := A0φ.

Our aim is to provide, together with their resolvents, all self-adjoint extensions of S.
For any z ∈ ρ(A0) we define the bounded operators

Rz := (−A0 + z)−1 : H → HA0 ,

Gz := (τRz̄)
∗ : h → H .

(2.1)

By [17], lemma 2.1, given the surjectivity hypothesis R(τ ) = h, the density assumption
K (τ ) = H is equivalent to

R(Gz) ∩ D(A0) = {0}.
2
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However, since by first resolvent identity,

(z − w)RwGz = Gw − Gz, (2.2)

one has

R(Gw − Gz) ⊂ D(A0).

From now on, even if this hypothesis can be avoided (see [16–19]), for the sake of simplicity
we suppose that

0 ∈ ρ(A0).

We define the family 	z, z ∈ ρ(A0), of bounded linear maps:

	z : h → h, 	z := τ (G0 − Gz) ≡ −zτA−1
0 Gz. (2.3)

Given then an orthogonal projection,


 : h → h, h0 ≡ R(
),

and a self-adjoint operator,

� : D(�) ⊆ h0 → h0,

we define the closed operator

	z,
,� := (� + 
	z
) : D(�) ⊆ h0 → h0,

and the open set

Z
,� := {z ∈ ρ(A0) : 0 ∈ ρ(	z,
,�)}.
With such premises the following two theorems have straightforward proofs. Theorem 2.1 is
an obvious modification (taking into account the hypothesis 0 ∈ ρ(A0)) of theorem 3.1 in [18]
(also see [17], theorem 3.4); theorem 2.2 is the combination of theorem 2.1 with theorem 2.1
and theorem 2.4 in [19] (also see [16], theorem 2.1, [17], theorem 2.2, for the case 
 = 1).

Theorem 2.1. The adjoint of S is given by

S∗ : D(S∗) ⊆ H → H , S∗φ = A0φ0,

D(S∗) = {φ ∈ H : φ = φ0 + G0ζφ, φ0 ∈ D(A0), ζφ ∈ h}.
Moreover,

∀φ,ψ ∈ D(S∗), 〈S∗φ,ψ〉 − 〈φ, S∗ψ〉 = (τφ0, ζψ) − (ζφ, τψ0). (2.4)

Theorem 2.2. The set Z
,� is not void,

C\R ⊆ Z
,�,

and

Rz,
,� := Rz + Gz
	−1
z,
,�
G∗

z̄ , z ∈ Z
,�,

is the resolvent of the self-adjoint extension A
,� of S defined by

A
,� : D(A
,�) ⊆ H → H , A
,�φ = S∗φ ≡ A0φ0,

D(A
,�) = {φ ∈ D(S∗) : ζφ ∈ D(�),
τφ0 = �ζφ}.

Remark 2.3. Note that, since φ0 = A−1
0 S∗φ,


τφ0 = �ζφ ⇐⇒ 
τ̂0φ = �ζφ,

3
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where the regularized trace operator τ̂0 is defined by

τ̂0 : D(S∗) → h, τ̂0φ := τA−1
0 S∗φ.

By exploiting the connection with von Neumann’s theory (see [19], section 3; see also
[17], section 4 for the case of relatively prime extensions) one obtains

Theorem 2.4. The set of operators provided by theorem 2.2 coincides with the set E (S) of
all self-adjoint extensions of the symmetric operator S. Thus E (S) is parametrized by the
bundle p : E(h) → P(h), where P(h) denotes the set of orthogonal projections in h, and
p−1(
) is the set of self-adjoint operators in the Hilbert space R(
). The set of self-adjoint
operators in h, i.e. p−1(1), parametrizes all relatively prime extensions of S i.e. those for which
D(Â) ∩ D(A0) = D(S).

We conclude this section with a result about the spectral properties of the extensions (see [6],
section 2, for point 1, and [18], theorem 3.4, for point 2).

Theorem 2.5.

(1)

λ ∈ σp(A
,�) ∩ ρ(A0) ⇐⇒ 0 ∈ σp(	λ,
,�),

where σp(·) denotes the point spectrum. An analogous result holds for the continuous
spectrum.

(2)

Gλ : K (	λ,
,�) → K (−A
,� + λ)

is a bijection for any λ ∈ σp(A
,�) ∩ ρ(A0).

3. Extensions and Krein’s Formula

Let � ⊂ Rn, n > 1, a bounded open set with a Lipschitz boundary. We denote by Hk(�) the
Sobolev–Hilbert space given by the closure of C∞(�̄) with respect to the norm

‖u‖2
Hk(�) =

∑
0�α1+...+αn�k

∥∥∂
α1
1 . . . ∂αn

n u
∥∥2

L2(�)
.

Analogously, Hk
0 (�) � Hk(�) denotes the closure of C∞

c (�) with respect to the same norm.
Given the differential expression,

A = ∇·a∇ − b·∇ − c ≡
n∑

i,j=1

∂i(aij ∂j ) −
n∑

i=1

bi∂i − c,

we suppose that the matrix a(x) ≡ (aij (x)) is Hermitean for a.e. x ∈ �, that there exist
μ1 > 0, μ2 > 0 such that

∀ξ ∈ Rn, μ1‖ξ‖2 � ξ ·a(x)ξ � μ2‖ξ‖2

and that

bi ∈ Lq(�), c ∈ Lq/2(�), q = n if n � 3, q > 2 if n = 2.

Then A maps H 1(�) into H−1(�) (see, e.g., [7], section 1, chapter VI), where H−1(�)

denotes the adjoint space of H 1
0 (�), the sesquilinear form,

4
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qA : H 1
0 (�) × H 1

0 (�) → C

qA(u, v) := − (〈∇u, a∇v〉L2(�) + 〈u, b·∇v〉L2(�) + 〈u, cv〉L2(�)

)
,

is continuous and there exists a positive constant λ such that −qA + λ is coercive (see, e.g.,
[7], proposition 1.2, chapter VI). Thus by Lax–Milgram theorem (see, e.g., [7], theorem 1.4,
chapter VI) there exists a unique closed, densely defined, linear operator,

A0 : D(A0) ⊆ L2(�) → L2(�), A0u = Au,

D(A0) = {
u ∈ H 1

0 (�) : Au ∈ L2(�)
}
,

such that

∀u ∈ D(A0), ∀v ∈ H 1
0 (�), qA(u, v) = 〈u,A0v〉L2(�).

Moreover, D(A0) is dense in H 1
0 (�); 0 ∈ ρ(−A0 + λ); A0 has a compact resolvent and its

spectrum consists of an infinite sequence of eigenvalues λn, each having finite multiplicity and
with Reλn < −λ. An analogous result holds for the sesquilinear form q∗

A:

q∗
A(u, v) := qA(v, u),

and the operator corresponding to q∗
A is the adjoint A∗

0.
Suppose now that

∂iaij ∈ Lq(�), q = n if n � 3, q > 2 if n = 2,

so that, by Sobolev embedding theorem, A is continuous from H 2(�) into L2(�) and

H 2
0 (�) � H 2(�) ∩ H 1

0 (�) ⊆ D(A0).

By interior regularity estimates (see, e.g., [13], section 7, chapter 3) A�C∞
c (�), the restriction

of A to C∞
c (�), is closable and its closure is given by Amin � A0, the minimal realization of

A, defined by

Amin : H 2
0 (�) ⊆ L2(�) → L2(�), Aminu := Au.

From now on we suppose that

qA = q∗
A.

Thus A0 is a self-adjoint operator, the Friedrichs extension of the closed symmetric operator
Amin, and one has

A∗
min = (A�C∞

c (�))
∗ = Amax,

where Amax, the maximal realization of A, is defined by

Amax : D(Amax) ⊆ L2(�) → L2(�), Amaxu := Au,

D(Amax) := {u ∈ L2(�) : Au ∈ L2(�)}.
Hence,

D(A0) = H 1
0 (�) ∩ D(Amax).

Moreover,

D(Amin) = H 2
0 (�) � D(Amax),

so that A�C∞
c (�) is not essentially self-adjoint:

Amin � A0 � Amax,

5
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and the symmetric operator Amin has infinitely many self-adjoint extensions. We want now
to find all such extensions and to give their resolvents. In order to render straightforward
the application of the results given in section 2, we would like to have a more explicit
characterization of D(A0). Thus in the following we impose more stringent hypotheses on
the set �.

Suppose that the boundary of � is a piecewise C2 surface with curvature bounded from
above and that aij ∈ C(�̄) when n � 3. Then, by global regularity results (see, e.g., [13],
chapter 3, section 11), the graph norm of Amax is equivalent to that of H 2(�) on C∞

0 (�̄),
the space of smooth functions on � which vanish on its boundary ∂�. Thus A�C∞

0 (�̄), the
restriction of A to C∞

0 (�̄), is closable and its closure is given by

Ã0 : H̃ 2
0(�) ⊆ L2(�) → L2(�), Ã0u := Au,

where H̃ 2
0(�) denotes the closure of C∞

0 (�̄) with respect to the H 2(�) norm.
Without further hypotheses on �, Ã0 �= A0 is possible: for example, if � is a non-convex

plane polygon then the Laplace operator � is not self-adjoint on H̃ 2
0(�). Indeed, by [2] it has

deficiency indices (d−, d+) = (d, d), where d is the number of non-convex corners .
Suppose now that the aij ’s are Lipschitz continuous up to the boundary and that ∂� is

C1,1, i.e. it is locally the graph of a C1 function with Lipschitz derivatives (see, e.g., [11],
section 1.2, for the precise definition). Then (see, e.g., [14], chapter 1, section 8.2, [11],
section 1.5) there are unique continuous and surjective linear maps:

ρ : H 1(�) → H 1/2(∂�),

γa : H 2(�) → H 3/2(∂�) ⊕ H 1/2(∂�), γaφ := (ρφ, τaφ) ,

such that

ρφ(x) := φ(x), τaφ(x) ≡ ∂φ

∂νa

(x) :=
n∑

i,j=1

aij (x)νi(x)∂jφ(x)

for any φ ∈ C∞(�̄) and x ∈ ∂�. Here ν ≡ (ν1, . . . , νn) denotes the outward normal vector on
∂� and Hs(∂�), s > 0, are the usual fractional Sobolev–Hilbert spaces on ∂� (see, e.g., [11],
section 1.3.3). Moreover, Green’s formula holds: for any u ∈ H 2(�) and v ∈ H 2(�)∩H 1

0 (�)

one has

〈Au, v〉L2(�) = 〈u,A0v〉L2(�) − 〈ρu, τav〉L2(∂�). (3.1)

By proceeding as in the proof of theorem 6.5 in [14][chapter 6] (which uses (3.1)) the map γa

can be extended to (see the comment in [11] before theorem 1.5.3.4)

γ̂a : D(Amax) → H−1/2(∂�) ⊕ H−3/2(∂�), γ̂aφ = (ρ̂φ, τ̂aφ),

where H−s(∂�) denotes the adjoint space of Hs(∂�), and Green’s formula (3.1) can be
extended to the case in which u ∈ D(Amax):

〈Amaxu, v〉L2(�) = 〈u,A0v〉L2(�) − (ρ̂u, τav)− 1
2 , 1

2
. (3.2)

Here (·, ·)− 1
2 , 1

2
denotes the duality between H 1/2(∂�) and H−1/2(∂�). With such definitions

of ρ and τ one has (see, e.g., [11], corollary 1.5.1.6)

H 1
0 (�) = H 1(�) ∩ K (ρ), H 2

0 (�) = H 2(�) ∩ K (γ1).

Moreover, by the stated properties of ρ and ρ̂, by the equivalence of the graph norm of Amax

with the H 2(�) norm on H̃ 2
0(�) and by the density of C∞(�̄) in D(Amax), one gets the

equalities

H̃ 2
0(�) = H 2(�) ∩ H 1

0 (�) = D(Amax) ∩ H 1
0 (�) ≡ D(A0),

so that Ã0 = A0.

6
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In conclusion, we can apply the results given in section 2 (by adding, if necessary, a
constant to A0 we may suppose that 0 ∈ ρ(A0)) to the self-adjoint operator

A0 : H 2(�) ∩ H 1
0 (�) ⊆ L2(�) → L2(�), A0u := Au,

with S = Amin, h = H 1/2(∂�) and

τ : H 2(�) ∩ H 1
0 (�) → H 1/2(∂�), τ := τa.

Note that K (τ ) = H 2
0 (�) since K (γa) = K (γ1) by ν(x)·a(x)ν(x) � μ1 > 0, x ∈ ∂�, and

that τ is surjective by the surjectivity of γa .
Thus, by theorem 2.4, under the hypotheses above, the set E (Amin) of all self-adjoint

extensions of Amin can be parametrized by the bundle

p : E(H 1/2(∂�)) → P(H 1/2(∂�)).

Now, in order to write down the extensions of Amin together with their resolvents, we make
explicit the operator Gz defined in (2.1). By theorem 2.1, since Amax = A∗

min, we have

D(Amax) = {u = u0 + G0h, u0 ∈ H 2(�) ∩ H 1
0 (�), h ∈ H 1/2(∂�)},

Amaxu = A0u0.

Thus AmaxG0h = 0 and so by (3.2) there follows, for all h ∈ H 1/2(∂�) and for all u ∈ D(A0),

〈G0h,A0u〉L2(�) = (ρ̂G0h, τau)− 1
2 , 1

2
.

Since, by (2.4),

〈G0h,A0u〉L2(�) = 〈G0h,Amaxu〉L2(�) = 〈G0h,A∗
minu〉L2(�) = 〈h, τau〉H 1/2(∂�),

one obtains ρ̂G0h = �h, where

� : H 1/2(∂�) → H−1/2(∂�)

is the unitary operator defined by

∀h1, h2 ∈ H 1/2(∂�), (�h1, h2)− 1
2 , 1

2
= 〈h1, h2〉H 1/2(∂�).

For successive notational convenience we pose � := �−1.

Remark 3.1. If ∂� carries a Riemannian structure then Hs(∂�) can be defined as the
completion of C∞(∂�) with respect to the scalar product

〈f, g〉Hs(∂�) := 〈f, (−�LB + 1)sg〉L2(∂�).

Here the self-adjoint operator �LB is the Laplace–Beltrami operator in L2(∂�). With such a
definition (−�LB + 1)1/2 can be extended to the unitary map �.

Since Gz = G0 + zA−1
0 Gz by (2.2), Gzh is the solution of the Dirichlet boundary value

problem: {
AmaxGzh = zGzh,

ρ̂Gzh = �h.
(3.3)

Thus we can write G0� = K , where K : H−1/2(∂�) → D(Amax) is the Poisson operator
which provides the solution of the Dirichlet problem with boundary data in H−1/2(∂�).
Analogously we define Kz : H−1/2(∂�) → D(Amax) by Kz := Gz�. Note that G0h,
hence Gzh, is uniquely defined as the solution of (3.3): for any other solution u one has
u − G0h ∈ K (A0) = {0}.

Now, according to (2.3), we define the bounded linear operator

	z : H 1/2(∂�) → H 1/2(∂�), 	z := τ(G0 − Gz),

7
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which, by (2.2) and the definitions of K and Kz, can be re-written as

	z = −zτaA
−1
0 Gz ≡ zτaRzK� ≡ (τ̂aK − τ̂aKz)�. (3.4)

By ρ̂G0h = �h, by theorem 2.1 and remark 2.3, we can define the regularized trace operator

τ̂a,0 : D(Amax) → H 1/2(∂�),

τ̂a,0u := τa(u − G0�ρ̂u) ≡ τ̂au − Paρ̂u ≡ τaA
−1
0 Amaxu,

(3.5)

where the linear operator Pa , known as the Dirichlet-to-Neumann operator over ∂�, is defined
by

Pa : H−1/2(∂�) → H−3/2(∂�), Pa := τ̂aK.

In conclusion, by theorems 2.2 and 2.4, one has the following

Theorem 3.2. Any self-adjoint extension Â of Amin is of the kind

Â : D(Â) ⊆ L2(�) → L2(�), Âu = Amaxu,

D(Â) = {u ∈ D(Amax) : �ρ̂u ∈ D(�), 
τ̂a,0u = ��ρ̂u},
where (
,�) ∈ E(H 1/2(∂�)), and

(−Â + z)−1 = (−A0 + z)−1 + Gz
(� + 
	z
)−1
G∗
z̄ ,

with τa,0,Gz and 	z defined by (3.5), (3.3) and (3.4), respectively.

Remark 3.3. When the boundary is smooth, by proceeding as in [19], example 5.5, in the
case the L2(∂�)-symmetric, bounded linear operator B : H 3/2(∂�) → H 1/2(∂�) is such
that �B := (−Pa + B)�,D(�B) = H 5/2(∂�), is self-adjoint (B pseudo-differential of order
strictly less than one suffices); the extension AB corresponding to (1,�B) has the domain
defined by Robin-type boundary conditions:

D(AB) := {u ∈ H 2(�) : τau = Bρ}.

4. A simple example

One of the simplest examples is given by a rotation-invariant second-order elliptic differential
operator on the unit disc D ⊂ R2. Thus we consider the self-adjoint extensions of

Amin : H 2
0 (D) ⊂ L2(D) → L2(D), Aminu = Au,

where

A = ∇·a∇ − c, aij (x) = a(‖x‖)δij , c(x) = c(‖x‖).
We suppose that a is Lipschitz continuous, inf0�r�1 a(r) > 0, and that c ∈ Lq((0, 1); r dr),

q > 2. By adding, if necessary, a constant to c we suppose that −A0 > 0.
In L2(D) � L2((0, 1); r dr)⊗L2((0, 2π); dϕ) we use the orthonormal basis {Umn},m ∈

N, n ∈ Z,

Umn(r, ϕ) = um|n|(r)
einϕ

√
2π

made by the normalized eigenfunctions of the Friedrichs extension A0 of A. Here {umn},m ∈
N, is the orthonormal basis in L2((0, 1); r dr) made by the normalized eigenfunctions of the
self-adjoint Sturm–Liouville operator:

Lnf (r) = −1

r
(ra(r)f ′(r))′ +

(
c(r) +

n2

r2

)
f (r), n � 0,

8
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with boundary conditions f (1−) = 0 and limr→0+ rf ′(r) = 0 if n = 0, f (0+) = 0 if n �= 0.
Denoting by λ2

mn > 0,m ∈ N, the eigenvalues of Ln, one has

σ(A0) = σd(A0) = {−λ2
m|n|,m ∈ N, n ∈ Z

}
.

In H 1/2(S1) we use the orthonormal basis {ek}, k ∈ Z, defined by

ek(ϕ) := eikϕ

√
2π(k2 + 1)1/4

.

We want now to compute the matrix elements, relative to the basis {Umn}, of the resolvents of
the self-adjoint extensions of Amin.

By defining

νmn := lim
r↑1

a(r)u′
mn(r),

one has

[G0]mnk: = 〈Umn,G0ek〉L2(D) = 〈G∗
0Umn, ek〉H 1/2(S1) =: [G∗

0]kmn

= 〈τa(−A0)
−1Umn, ek〉H 1/2(S1) = (n2 + 1)1/4 νm|n|

λ2
m|n|

δnk.

Since Gz = G0 − z(−A0 + z)−1G0, one has then

[Gz]mnk = [G∗
z ]kmn = [G0]mnk − z

λ2
m|n| + z

[G0]mnk

= λ2
m|n|

λ2
m|n| + z

[G0]mnk = (n2 + 1)1/4 νm|n|
λ2

m|n| + z
δnk.

Analogously

[	z]ik: = −z〈ei, τa(−A0 + z)−1G0ek〉H 1/2(S1)

= −z(k2 + 1)1/2
∞∑

m=1

ν2
m|k|

λ2
m|k|

(
λ2

m|k| + z
)δik.

Thus, in the case the orthogonal projection 
 is the one corresponding to the subspace of
H 1/2(S1) generated by {ek, k ∈ I }, I ⊆ Z, and [�]ik = θkδik, k ∈ I , by theorem 2.2 one
obtains

[(−A
,� + z)−1]mnm̃ñ := 〈Umn, (−A
,� + z)−1Um̃ñ〉L2(D)

= δmm̃δnñ

λ2
m|n| + z

+
(n2 + 1)1/2

θn + [	z]nn

νm|n|
λ2

m|n| + z

νm̃|n|
λ2

m̃|n| + z
δnñ

for any n ∈ I , and

[(−A
,� + z)−1]mnm̃ñ = δmm̃δnñ

λ2
m|n| + z

for any n /∈ I . Once the resolvent has been written as above, by theorem 2.5 given any
sequence

{λn}n∈I ⊂ R ∩ ρ(A0),

posing

θn := −[	λn
]nn, n ∈ I,

one obtains

{λn}n∈I ⊂ σp(A
,�).

9
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Moreover,

Un =
∞∑

m=1

νm|n|
λ2

m|n| + λn

Umn

is the eigenfunction with eigenvalue λn.

Remark 4.1. The previous example can be re-phrased in the language of decomposable
operators (see, e.g., [21], section 13.16): the operator A0 is decomposable with fibers
A0(n) = −L|n|, and the decomposable self-adjoint extensions of Amin have decomposable
resolvents with fibers given by the resolvents of the self-adjoint extensions of the fibers Amin(n),
which are symmetric operators with deficiency indices (1, 1). However this approach gives a
less (than that provided by theorem 3.2) explicit expression for the self-adjointness domain.

Remark 4.2. In the case a = 1, c = 0, one has

λmn = μmn, umn(r) = cmnJn(μmnr),

where Jn denotes the nth order Bessel function, μmn is its mth positive zero, and cmn is the
normalization constant. Thus

νmn = −cmnμmnJn+1(μmn).

The following remark shows that the boundary conditions corresponding to couples (
,�)

of the above kind can be quite different from the usual ones.

Remark 4.3. Suppose in the previous example we take a = 1, c = 0, i.e. A = � and
I = {0}, λ0 = 0. Then


 : H 1/2(S1) → C, 
f = 1√
2π

∫ 2π

0
f (ϕ) dϕ,

and � : C → C is the multiplication by zero, since 	0 = 0. Thus

D(�
,0) =
{
u ∈ D(�max) : �ρ̂u = const,

∫ 2π

0
τ̂1,0u(ϕ) dϕ = 0

}
.

Since � ≡ �−1 maps constants into constants,

{u ∈ D(�max) : ρ̂u = const} = {u ∈ H 2(D) : ρu = const}
by elliptic regularity, and

∫ 2π

0
τ̂1,0u(ϕ) dϕ =

∫ 2π

0
[τ1�

−1
0 �maxu](ϕ) dϕ =

∫ 2π

0
τ1u(ϕ) dϕ,

in conclusion one has

D(�
,0) =
{
u ∈ H 2(D) : ρu = const,

∫ 2π

0
ρ

∂u

∂r
(ϕ) dϕ = 0

}
.
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